Investigating Price Discovery Using a VAR-GARCH(1,1) Model of Order Flow and Stock Returns

نویسندگان

  • Daniel Maroney
  • Stephen Satchell
چکیده

The VAR-GARCH(1,1) price discovery model developed and tested with ASX data represents an extension of both the Chordia, Roll and Subrahmanyam (2005) and Hasbrouck (1991) models. The VAR-GARCH(1,1) price discovery model functions in accordance with the explanation for price discovery described by Chordia, Roll and Subrahmanyam (2005). This model allows the causal relationships between order flow and stock returns to be assessed, and for important aspects of the price discovery process to be measured. Both these analyses and the model itself represent contributions to the literature. This study also introduces an active trader order flow variable for fiveminute intervals using broker identification data from the ASX, which enables the brokers who executed each trade to be identified, including whether they were retail or institutional brokers. The findings highlight that active trader order flow, including institutional order flow, has a positive causal relationship with stock returns. In addition, they show that active retail order flow has a negative causal relationship with stock returns. Discussion Paper: 2016-001

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Asymmetry in Volatility for the Iranian Stock Market

This paper investigates the asymmetry in volatility of returns for the Iranian stock market using the daily closing values of the Tehran exchange price index (TEPIX) covering the period from March 25, 2001 to July 25, 2012, with a total of 2743 observations. To this end, two sets of tests have been employed: the first set is based on the residuals derived from a symmetric GARCH (1,1) model. The...

متن کامل

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange

Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatil...

متن کامل

Modelling Dynamic Conditional Correlations in the Volatility of Spot and Forward Oil Price Returns

This paper estimates the dynamic conditional correlations in the returns on Tapis oil spot and onemonth forward prices for the period 2 June 1992 to 16 January 2004, using recently developed multivariate conditional volatility models, namely the Constant Conditional Correlation Multivariate GARCH (CCCMGARCH) model of Bollerslev [1990], Vector Autoregressive Moving Average – GARCH (VARMAGARCH) m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016